Building Safe and Secure
Systems with AADL

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Julien Delange
AADL Meeting February 15

=== Software Engineering Institute | CarnegieMellon © 2015 Carnegi ellon Uriversiy

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE
15 FEB 2015 N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Building Safe and Secure Systemswith AADL

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Delange /Julien

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Softwar e Engineering Institute Car negie M ellon Univer sity Pittsburgh,

PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THISPAGE
unclassified unclassified unclassified

17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER | 19a. NAME OF
OF PAGES RESPONSIBLE PERSON

30

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0002054

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

Introduction

Systems are becoming extremely software-reliant

Need to verify and validate requirements
* Requirements errors propagate through design
* Need to verify/validate requirements

24,000

Major integration and coding issues Cpsntir ot
/

* Incur massive re-engineering rework
e Could be removed by early analysis

135 236
F-16ABlock1 F-16D Block 60 F-22 Raptor F-35 Lightning Il F-35 Lightning Il
(1974) (1984) (1997) (2006) (2012)

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon uiien belange, February 15 5

© 2015 Carnegie Mellon University

Architecture Analysis and Design Language

Model-Based Engineering with AADL

* Architecture Language Description standardized by SAE
e Description of Systems and Software Concerns
* Precise & unambiguous semantics

« Textual and Graphical Representation

Support for Model Analysis
* Verify system requirements (i.e. latency, safety)
 Check model integration before producing the implementation

= - - . AADL meeting — ARINC653 Annex
Software Engineering Institute | CarnegieMellon suiien belange, February 15

© 2015 Carnegie Mellon University

AADL Model-Based Technology Overview

Single Source Annotated Architecture Model
with Well-defined Semantics

Safety
& Reliabilit
MTBF
FMEA E\\ I —ne=’
~ &
Hazard
analysis
Auto-generated
Data
Quality v
Data precision/ i
Aceuracy Real-time
Performance
Temporal Execution time/
correctness Deadline
Confidence Deadlock/starvation
Latency

Security
Intrusion

Integrity
Confidentiality

analytical models \ c Resource

onsumption

Bandwidth
CPU time

Power
consumption

Software Engineering Institute | Carnegie Mellon

AADL meeting — ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Understanding Actual Software Issues

High Fault Leakage Drives Major Increase in Rework Cost
Aircraft industry has reached limits of affordability £20.5% 300-100

due to exponential growth in SW size and complexity.
. ts -'._- o

70% Requirements & Test
system interaction errors _80% late em:_r
: discovery at high
. System rework cost ’
System
Test

70%,3.5% 1x

e Major cost savings through rework avoidance
by early discovery and correction

A $10k architecture phase correction saves $3M

S 20%,16%
5')(Unit ’ Where faults are introduced
e ' Test
Rework and certification is 70% of SW . Where faults are found
cost, and SW is 70% of system cost. The estimated nominal cost for fault removal
NIST Planning report 02-2, The Economic Impacts of Inadequate CDS‘“Y certification process leads to hlﬂh
Infrastructure for Software Tesfing, May 2002. RALA percentage of operational work around.

D. Galin, Software Quality Assurance: From Theory fo
Implementation, Pearson/Addis on-Wesley (2004) Code
E.W. Boehm, Software Engineering Economics, Prentice Hall [1981) Development

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

Use of AADL in Development Process

Software and Component Design
Define components requirements & interfaces
Early verification validation of components integration

Code Development
Auto-Generate Code (AADL, Simulink, SCADE)
Avoid traditional coding errors
Ensure correct translation of requirements

Unit & Integration Test
Automatic generation of tests from models
Reduce tests as system was validated earlier

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

10

Security Specifications

Leverage AADL properties for security level specification
Define security-specific values
Associate them with components and interfaces

Direct mapping to MILS Security Level concepts

MILS subjects to AADL runtime components
Subjects

MILS objects to AADL interfaces
consumer_prs

producer prs

consumer_producer::produceri umer_producer::consumer.i

Objects (data produced)

AADL meeting — ARINC653 Annex

Software Engineering Institute ‘ CarnegieMellon ulien Delange, February 15 1

© 2015 Carnegie Mellon University

Partitioning Policy (as in ARINC653 or MILS)

Partitions content and attributes
Use the regular process component
Include partition resources (tasks, data, etc.)
Time and Space Isolation
Time: Partition execution slots
Space: Association of partitions to memory segments

AADL meeting — ARINC653 Annex

Software Engineering Institute ‘ CarnegieMellon ulien Delange, February 15 12

© 2015 Carnegie Mellon University

Modeling a MILS architecture - example
Software interfaces and data flows

" Tasks
Partition Content
) T\

parti part2

r—twupmtrrrlr'——*'rder.'h'rrpl-———1 ils:nr raceiverimple - - -

/ . / r o reov !

]l twoparts_mils::producer.impl [‘ : twoparts_mils::consumer.impl "

'll data:l:t - " ;

l' ll oo datacups” o e ,'
Software (process) & / _— i —»
Hardware (cpu/memory) . > T :
associations/bindings*- mew Binding [" heal Mamary g o] ;

H M-H'P%'a:gpor_elndlng [o] s ‘_Wﬂ_[ﬂl.
cpﬁ - — S T — |

PR 212 Tt 'M‘-‘-,Ia'

i ~ partl =
1 l| . -
L. twoparts_mil rtition. |m;.\l-' _¥ mils:: :
part2 _
twoparts_n..'s::partiticnmemory
—

Vad

/ './ —
Physical Memory

Separation kernel
Partition runtime
AADL meeting — ARINC653 Annex

Julien Delange, February 15

-

13

Software Engineering Institute | Carnegie Mellon
© 2015 Carnegie Mellon University

Safety Policy with the Error-Model Annex V2

Standardized AADL annex dedicated for safety specification
Integrated with AADL-core ConeunencyEror

Extend/refine existing models Rmmm/v D\g,mExEm

i 7N

ReadWriteRace YWriteWyrite Race Deadlock Starvatio

Support of Error Types Ontology | || | | |

Characterize the error (i.e. divide by zero, late value)
Types hierarchy (i.e. late value is an extension of a timing error)

Error Propagations and Behavior Specification
Errors being propagated by AADL components
Behavior based on external interfaces or sub-components

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

14

Error Propagation

rror Sourc
of ValueError

Sink for ValueError Error Sink
source for NoData for NoData

ValueError NoData
\ 7
~

V4

\ N 7 1

\ \ /7 /7

SN /. -~
N\ ¢
\ Y4

Errors Propagations through Interfaces

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15 15

© 2015 Carnegie Mellon University

thr
fea

dann

#ok}

Error Propagation Example

producer prs

consumer_producer::p

ead producer
tures

" to_consum CONsSUmer_prs

consumer_producer::consumer.i

dataout : out data port Character;
ex EMV2 {** .
use types errorlibrary;

error propagations
flows

end propagations;

P N N S I Yo =y
dataout : out propagation {ValueError};

fo : error source dataocut {valueError};

component error behavior
events

ComputationError : error event;
transitions

t0 : Operational -[ComputationError]l-= Failed;

propagations
po : Failed -[]-» datacut{valueError};
end component;

thread consumer
features

datain : in data port Character;

annex EMyZ2 {#+*

*H}

use types errorlibrary;
arror propagations

datain : in propagation {ValusError};
Tlows

fo : error sink datain {ValueError};
end propagations;

component error behavior
transitions

end component;
properties

t0 : Operational -[datain{valueError}]-= Failed;

EMVZ::severity == ARPA761::Hazardous applies to datain.ValueError;

r

properties

applies to dataout.ValueError;

EMVZ: :hazards ==
([crossreference == "TBD";
failure == "";
phases == ("all");

1)

applies to dataout.ValueError;

Hllu CUTTSUITET ,

EMV2: :severity => ARP4761::Hazardous applies to dataout.valueError; _ _
EMVZ::0ccurrenceDistribution == [Probabilityvalue == 1.42e-5 ; Distribution == Poisson;]

EMV2::likelihood => ARP4761::Probable applies to dataout.ValueError;

description => "Bad Value from the thread producer";
comment => "Must check the software that the value 1s not faulty";

Software Engineering Institute

AADL meeting — ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

Carnegie Mellon

16

Error behavior

States machines
Error-related transitions
Propagation rules
Use of error types

Failure
(BadData)

Recover

Failed
NoValue

Composite behavior
Define system states according to its parts

ex: “l am failing if one of my component is failing”

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

17

Error behavior example

part1 part2
=twoparte-m? - .
rod I —
'l twopart: |p rod impl ! J; reev "
j' parts_mils:procucerimp [’ I twoparts_mils::consumer.impl 'l'
I 1 0 datain 1
: dataout T 1
I
,. S S ,
P '
T e
'l' "\‘\\! ""- =|'
1 ~ e H
h Sl]
{ P H
Actual Procedsar_Binding [0] ’/' Actual_Mamnry_Banqg ol !
i -~ ‘\\ |
Ll "D"' r_Binding [a] ~ Actugl Ll mrllm Dindine [0
] —
A MR part1 M—;;ﬁ’ parts_mil: Pa'f“ memory.imp
Lew. Mupartsimils::paﬂition.irrplr:__:,' Mupaﬂsimils::pfartilianmemory
e e = ¥
I parz I part2 t1;
L___ twoparts_mils::partition.impl ___y' twoparts_mils::partitionmemory
t2;
v
T ey e e e
i - i - 1T %
-- prove (check deos compliance(this))
prove (check mils compliance(this))
.+..+.} :

annex EMyZ2 {** _
use types errorlibrary; _
use behavior errorlibrary::FailandRecover;

composite error behavior

states
[partl.Failed]l-> Failed;
[part2.Failed]-> Failed;

[cpu.Failed]-> Failed;

end composite;

:+::+:} :
end node.impl;

Carnegie Mellon

pu.partl)) applies to partl;
pu.part2)) applies to part2;

AADL meeting — ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

18

Software Engineering Institute

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

19

Security Policy Verification

Component integration and composition
Partitions share the same level with their tasks
Partitions contain objects at the same level

Runtime issues
Each process is isolated in a partition
Partitions has at least one execution slot
Memory segments contain partitions at the same security level

Communication Policies
Communication share the same level
A shared device manages objects at the same level

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon uiien belange, February 15 20

© 2015 Carnegie Mellon University

Specifying Validation Rules with RESOLUTE

Specify constraints on the AADL model
Check model consistency and properties

Validation at model level, avoid propagation of errors

List of rules and functions to check the model
Select elements to be verified

Filter them according to your constraints
Check components characteristics

check_mils_partitions_connections (s : system) <=
** '"Check that connected partitions in

" 5 " share the_szme
forall (pl : process) (p2

Select process, connections &
virtual processor elements

TUTLLY Level" %

: process) (c : connection) (vpl : virtual processor) (vp2 : virtual processor) .
(connected (pl, c, p2)) and (processor bound (pl, vpl)) and (processor_bound (p2, vp2))

== property l:vpl,ﬁg:SecurltyLeveL] = property (vp2, SEI::Securitylevel) Qe

Filter connected partitions Check the runtime security
with their associated runtime level is equal

= - - . AADL meeting — ARINC653 Annex
Software Engineering Institute | CarnegieMellon suiien belange, February 15

21
© 2015 Carnegie Mellon University

Generating Assurance Cases

Generate assurance-cases using RESOLUTE and AADL
Show constraints dependencies
Export to Certware

Problems Properties Y aaDL Property Values EAssurance Case £ Search | AGREE Results [E] Console & Progress

w 4 Check compliance of the model with MILS guidelines
* + Checkthat component 'node_impl_Instance : twoparts_mils::node.impl' and its subcomponents define their security levels
+f Check that connected partitions in 'node_impl_Instance : twoparts_mils::node.impl' share the same security level
+f Check that memory segments in system s 'node_impl_Instance : twoparts_mils::node.impl' are bound to partitions with the same security level
v «f Check that component 'node_impl_Instance : twoparts_mils::node.impl' has subcomponents at the same level
v 4 Check that component 'partl : twoparts_mils::pr_sender.impl' has subcomponents at the same level
+/ Check that component 'prod : twoparts_mils:: producerimpl’ has subcomponents at the same level
v «f Checkthat component 'part2 : twoparts_mils::pr_receiver.impl' has subcomponents at the same level

«/ Check that component 'recv : twoparts_mils::consumer.impl' has subcomponents at the same level

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15 22

© 2015 Carnegie Mellon University

Safety documentation Generation - FHA

Functional Hazard Assessment
List of all error sources of the system

FHA : localc - Konsole

E twoparts-mils_node_impl_Instance_ FHA.csv - LibreOffice Calc
Hle Edit View Insert Format Tools Data Window Help

ERA=RAAR ANZANER= "N AL IS IPN AN g eV i+m | H

= INimbus Sans L j Il'::I H oy iUy =E =E=EE % oo oz | =g pz |- o - I - | F
81 j i, Z = |[Component

A B | C

1 Error Hazard Description
_2 |partl/prod ValueError on dataout Bad Value from the thread producer

3 |cpu HardwareError on HardwareError Hardware Failure of the CPU

4 |cpu/partl SoftwareFailure on SoftwareFailure Software failure from the platform (OS exception; etc.)

5 |cpu/part2 SoftwareFailure on SoftwareFailure Software failure from the platform (OS exception; etc.)

6

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon uiien belange, February 15 23

© 2015 Carnegie Mellon University

Safety documentation Generation -

Fault-Tree Analysis
Bottom-up Approach

Show all contributor of a fault

component
node_impl_Instance
in state Failed

evently

A

FTA

eventlt

eventd

component partl in

eventd

component part? in
state Failed

Error event state Failed
Failuretypes
=allTypes=
eventd eventld

£

=allTypes=

eventd

0l

{ServiceErrary

event?
0.1

[

3

eventll
0.l

Processor
Error event ’ Error event .
. errar with . arrar with
Failuretypes Failuretypes
Tpes =allTypes= Tipes
{SemviceError}

eventls
0.1

Processor

component cpu in
state Failed

eventls

eventlf

1.24e-05

eventl?
0.1

Error event
Failuretypes
=allTypes=

Hardware
Failure of the
CFU

Software Engineering Institute

Carnegie Mellon

AADL meeting — ARINC653 Annex
Julien Delange, February 15
© 2015 Carnegie Mellon University

24

Safety documentation Generation — Fault Impact

Failure Mode and Effect Analysis
Propagation paths of failures
Highlight failure containment

A
[

Fle Edit View |Insert Formmat Tools Data Window Help

twoparts-mils_node_impl_Instance__Faultimpact.csv - LibreOffice Calc

B-H-EE AP Eg e A0 %D - 4050 @V +=EH

_-: INimbusSansL jllﬂ iy i U= = E= %) o oz | sqpe |HH -5 T~ | F
I":SI j St E =
A [s 0 | r | ;
1
2
3 |[Component Initial Failure Mor 1st Level Effect Failure Mode second Level Effect Failure Mode
4 |part1.prod {ValueError} {ValueError} dataout -> part2 recv:datain part2recv {ValueError [Masked)]
3 |cpu.partl |[{ServiceError} {ServiceError} bindings -> part1:processor | partl {ServiceError} {ValueError dataout -=» part2.recv {ValueError} [Masked]
6 |cpu.part2 internal event Failk{ltemOmission} bindings -= part2 processor part2 {temOmission} [Fallure Effect]
7 |cpu.patt2 | internal event Soft{LateServiceTermination} bindings - part2: ppant2 {LateServiceTermination} [Failure Effect]
8 |cpu.part2 |{ServiceError} {ServiceError} bindings -> part2 processor partz {ServiceError] [Failure Effect]
—— - - - . AADL meeting — ARINC653 Annex
== Software Engineering Institute | Carnegie Mellon Julien Delange, February 15 25

© 2015 Carnegie Mellon University

Automatic Code Generation

Automatically produce system implementation
Ensure implementation of system requirements
Avoid traditional mistakes of manual code generation

Low overhead (memory footprint and additional CPU time)
Less than 10% in memory and computation increase
Benefits outweigh the potential

Support for different runtime
ARINCG653/MILS — focus on safety/security (DeOS, POK)
POSIX (RTEMS, Linux)

AADL meeting — ARINC653 Annex

Software Engineering Institute ‘ CarnegieMellon ulien Delange, February 15 26

© 2015 Carnegie Mellon University

Agenda

Introduction to AADL

AADL modeling patterns for safety and security

AADL validation tools dedicated to security and safety

Demonstration

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

27

Conclusion

AADL flexible language to define safety and security concerns
Early verification, reducing tests and integration costs
Automatic code production, avoiding code and integration mistakes

Integration with existing development methods
Safety documentation (i.e. ARP4761)
Coding standards (i.e. ARINC653)

Bridge with Validation and Assurance Case tools
Check model consistency and composition
Auto-Generate assurance cases from models

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon uiien belange, February 15 28

© 2015 Carnegie Mellon University

Links & Useful Information

AADL website — http://www.aadl.info

AADL wiki — http://Iwww.aadl.info/wiki

ARINC653 AADL annex standard - http://standards.sae.orq/as5506/2/

AADL meeting — ARINC653 Annex

Software Engineering Institute | CarnegieMellon ulien Delange, February 15

© 2015 Carnegie Mellon University

29

Contact

Dr. Julien Delange

RTSS AP Initiative

Telephone: +1 412-268-9652
Email: jdelange@sei.cmu.edu

Web

www.aadl.info
www.sei.cmu.edu
www.seil.cmu.edu/contact.cfm

U.S. Mall

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations

Email: info@sel.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEl Fax: +1 412-268-6257

Software Engineering Institute

. AADL meeting — ARINC653 Annex
Carneg]eMellon Julien Delange, February 15 30

© 2015 Carnegie Mellon University

	Building Safe and Secure Systems with AADL
	Slide Number 2
	Agenda
	Agenda
	Introduction
	Architecture Analysis and Design Language
	AADL Model-Based Technology Overview
	Understanding Actual Software Issues
	Use of AADL in Development Process
	Agenda
	Security Specifications
	Partitioning Policy (as in ARINC653 or MILS)
	Modeling a MILS architecture - example
	Safety Policy with the Error-Model Annex V2
	Error Propagation
	Error Propagation Example
	Error behavior
	Error behavior example
	Agenda
	Security Policy Verification
	Specifying Validation Rules with RESOLUTE
	Generating Assurance Cases
	Safety documentation Generation - FHA
	Safety documentation Generation - FTA
	Safety documentation Generation – Fault Impact
	Automatic Code Generation
	Agenda
	Conclusion
	Links & Useful Information
	Contact

